DEEP LEARNING

Lecture 13: Meta-Learning

Dr. Yang Lu

Department of Computer Science and Technology

luyang@xmu.edu.cn

When meta is used as a single word, it refers to itself or to the conventions of its genre, self-referential.

■The chinese translation is 元.

What is Meta?

- When meta is used as a prefix, meta-X means "beyond-X," "after-X," or "X about X".
- Examples:
 - Metadata: data that describes other data.
 - Metafile: in computer graphics, define objects and images using a list of coordinates.
 - Metaphysics (形面上学): a branch of philosophy that examines the fundamental nature of reality.
 - Meta-analysis: a statistical analysis that combines the results of multiple scientific studies.
 - Metaverse: a virtual world supporting persistent online 3-D virtual environments.

Meta-Learning

From the bestselling author of *A Mind for Numbers* and the creators of the popular online course Learning How to Learn

Meta-learning (元学习) also means "beyond learning", "above learning" or "learning about learning".

It has another name:

Learning to learn

BARBARA OAKLEY, PhD, and TERRENCE SEJNOWSKI, PhD, WITH ALISTAIR McCONVILLE

Meta-Learning

- Historically, the success of machine learning was driven by the choice of hand-engineered features with model learning.
 - Problem: how to select feature...
- Deep learning realized the promise of joint feature and model learning, providing a huge improvement in performance for many tasks.
 - Problem: how to select algorithm/hyperparameter...
- Meta-learning in neural networks can be seen as aiming to provide the next step of integrating joint feature, model, and algorithm learning.

Algorithm Learning

Learning aspects:

- Model learning: select the best model for the task.
- Feature learning: select the best feature for the task.
- Algorithm learning: select the best algorithm for the task.
- How do we select an algorithm to train a model?
 - Manually try different algorithms.
 - Manually try an algorithm with different hyperparameters.

Algorithm Selection vs. Algorithm Learning

Industry

Academia

Using 1000 GPUs to try 1000 sets of hyperparameters

Randomly choose a set by imagination and claim that it is the best!

Meta-learning automates this procedure by end-to-end neural networks.

https://media.bastillepost.com/wp-content/uploads/hongkong/2016/05/20160526 HIST %E7%85%89%E4%B8%B9 %E7%A7%A6%E5%A7%8B%E7%9A%87F.jpg

Relation to AutoML

- AutoML aims to automate parts of the machin learning process that are typically manual.
 - Such as data preparation, algorithm selection, hype parameter tuning, and architecture search.
- AutoML sometimes makes use of end-to-en optimization.
 - Meta-learning can be seen as a specialization of AutoML.

Google Cloud AutoML

Meta-learning is about algorithm learning, rather than algorithm tuning.

From Machine Learning to Meta-Learning

In machine learning, we select an algorithm F, train it by optimizing the parameter θ , and obtain model f_{θ} .

By the idea of learning to learn, can we learn F?

From Machine Learning to Meta-Learning

Now, our goal is to find the best algorithm F for the task, just like the best model f for the data.

 ω is learnable algorithm parameters. It is usually called meta-knowledge.

From Machine Learning to Meta-Learning

• When we deal with multiple tasks, we can also train F_{ω} to be good for all tasks. In this way, it is capable of generalizing new task.

Single-Task and Multi-Task Meta-Learning

- Single-task and multi-task meta-learning actually deals with different problems.
 - Single-task meta-learning aims at learning the most suitable algorithm for this task.
 - Multi-task meta-learning aims at learning the most suitable algorithm for all tasks, and be capable of dealing with new task.

Notice the difference between multi-task meta-learning and multi-task learning.

How to Learn Model Parameter?

Now, the problem is how to learn algorithm parameter ω ?

Recall that how we learn model parameter θ .

How to Learn Model Parameter?

Content reproduced from "Meta Learning: Learn to Learn" by Hung-Yi Lee

0.3

dog

 l_2

dog

How to Learn Model Parameter?

loss:
$$L(\theta) = \sum_{i=1}^{|D|} l_i$$

sum over training examples

$$\theta^* = \underset{\theta}{\operatorname{argmin}} L(\theta)$$

done by gradient descent

 f_{θ^*} is the model learned by a learning algorithm from data.

- Learning algorithm parameter is exactly same as learning model parameter.
- Instead of generalizing over data, it generalizes over tasks.

- In typical machine learning, the loss is computed based on training examples.
- In meta-learning, the loss is computed based on testing examples.
- Is there any problem here?

You dare use testing data during training!

- However, we have to use "testing data" to evaluate how the algorithm parameter performs.
- We can cut a part from the training data, just like validation data.

Query set is nothing but "validation data for training"

- Similarly, we also split testing data into support and query set.
- The label of testing support set is available during testing.
- The testing query set is the real testing data to evaluate the performance of metalearning algorithm.

19

Formalizing Meta-Learning

- Training and testing phases in meta-learning is called meta-training and meta-testing.
 - Meta-training can be formalized as bi-level optimization:

Few-Shot Learning

- One direct application of multi-task metalearning is few-shot learning (小样本学习).
- Do we human beings need great amount of training data to recognize image category?
- No! We have the learning ability. We know how to learn!
 - When we deal with new task, our experience help us learn with only a few samples.
 - We are experts of "learning to learn".

- Have you seen before an okapi?
- Can you learn to recognize it from only this image?

Few-Shot Learning

A typical setting for few-shot learning: n-way-k-shot k is usually set at 1 or 5

Few-shot learning has its own benchmark datasets.

- MiniImageNet, Fewshot-CIFAR100, Omniglot, etc.
- A typical dataset split for MiniImageNet is: 64 training classes, 12 validation classes, and 24 test classes.
 - No class overlap among training, validating and test.
- We run a lot of episodes for training. In each episode, we randomly select N classes with k + 1 samples.
 - k support samples and 1 query sample.

Few-Shot Classification Leaderboard

minilmageNet Leaderboard (5-class)

Edit this leaderboard

							Search:	
Method	Venue	Year 🔶	Backbone 🗍	Setting	1-shot 🔻	5-shot 🔶	Code	Reported by
EASY	arXiv	2022	3xResNet012	Transductive	84.04 ± 0.23	89.14 ± 0.11	[PyTorch]	[Source]
iLPC	ICCV	2021	WRN-28-10	Semi-supervised	83.58±0.79	89.68±0.37	[PyTorch]	[Source]
iLPC	ICCV	2021	WRN-28-10	Transductive	83.05±0.79	88.82±0.42	[PyTorch]	[Source]
PT+MAP	arXiv	2021	WRN	Transductive	82.92 ± 0.26	88.82 ± 0.13	[PyTorch]	[Source]
PTN	AAAI	2021	WRN-28-10	Semi-supervised	82.66 ± 0.97	88.43 ± 0.67	None	[Source]
EASY	arXiv	2022	2xResNet-12(1/√2)	Transductive	82.31 ± 0.24	88.57 ± 0.12	[PyTorch]	[Source]
Simple CNAPS	CVPR	2020	ResNet18 (pre-trained on ImageNet)	Inductive	82.16	89.80	[PyTorch]	[Source]
Oblique Manifold	ICCV	2021	WRN-28-10	Transductive	80.64±0.34	89.39±0.39	[PyTorch]	[Source]
ICA + MSP	ECCV	2020	DenseNet	Semi-supervised	80.11 ± 0.25	85.78 ± 0.13	None	[Source]
EPNet	ECCV	2020	WRN-28-10	Semi-supervised	79.22 ± 0.92	88.05 ± 0.51	[PyTorch]	[Source]

Meta-Knowledge

Talking so much about the learnable algorithm F_{ω} .

• What exactly are those algorithm parameters ω ?

Meta-Knowledge Taxonomy

- Optimization-based Method
- Model-based Method
- Metric-based Method

OPTIMIZATION-BASED METHOD

Optimization-Based Method

The meta-knowledge ω is related to the optimization process.

- Learning to optimize
- Learning to initialize
- Learning to weight
- Learning to reward
- Learning to augment
- Dataset distillation
- Neural architecture search

Learning to learn by gradient descent by gradient descent

Marcin Andrychowicz¹, Misha Denil¹, Sergio Gómez Colmenarejo¹, Matthew W. Hoffman¹, David Pfau¹, Tom Schaul¹, Brendan Shillingford^{1,2}, Nando de Freitas^{1,2,3}

¹Google DeepMind ²University of Oxford ³Canadian Institute for Advanced Research

marcin.andrychowicz@gmail.com
{mdenil,sergomez,mwhoffman,pfau,schaul}@google.com
brendan.shillingford@cs.ox.ac.uk,nandodefreitas@google.com

Conventionally, when we do optimization

$$\theta_{t+1} \leftarrow \theta_t + \lambda g \big(\nabla_{\theta} L(\theta_t) \big)$$

we select the optimizer g such as SGD, momentum, AdaGrad, ADAM, etc.

- g can be seen as a hand-crafted function of the gradients.
- In meta-learning, we can learn proper optimization function by meta-knowledge ω :

$$\theta_{t+1} \leftarrow \theta_t + g_\omega \big(\nabla_\theta L(\theta_t) \big)$$

Original image: S. Ravi and H. Larochelle, "Optimization as a Model for Few-Shot Learning," in ICLR, 2017, pp. 1–11.

Learn update direction and learning rate separately

Learning to Initialize

Model-agnostic meta-learning for fast adaptation of deep networks C Finn, P Abbeel, S Levine - ... on machine learning, 2017 - proceedings.mlr.press ... for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, ... ☆ Save 50 Cite Cited by 10953 Related articles All 14 versions ≫

- In Model-Agnostic Meta-Learning (MAML), ω is the initialized model parameter θ .
- The goal is to find a good θ , such that only a few steps optimization can obtain good model for a task.

MAML

The optimization of MAML follows:

$$\begin{aligned} \theta_i' &\leftarrow \theta - \beta \nabla_{\theta} L\left(\theta, D_{train}^{support(i)}\right) \\ \theta &\leftarrow \theta - \alpha \nabla_{\theta} \sum_{i=1}^M L\left(\theta_i', D_{train}^{query(i)}\right) \end{aligned}$$

- ω is the model parameter θ itself.
- The loss function is same: $L = L^{meta} = L^{task}$.
- It is call model-agnostic because there is no specified meta-learning model for ω .
 - Any model can apply MAML.

MAML

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do Inner loop
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

7: end for

8: Update
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

9: end while

Inner loop updates model parameter for each task *i*.

Outer loop updates θ by evaluating each θ_i' on query set.

 θ_i' is obtained from θ . Therefore evaluating θ_i' implicitly evaluates θ .

Outer loop

6 夏門大學信息学院(特色化示范性软件学院)

MAML vs. pre-trained model

- MAML looks for a good initialization to generalize new task.
- Pre-trained model transfers knowledge from a welllearned model on source tasks to a target task by finetuning.

What is the difference here?

• MAML doesn't require the initialized model θ perform well on each task, but the one-step optimized θ_i' :

$$L(\theta) = \sum_{i=1}^{M} L\left(\frac{\theta'_{i}}{D_{train}}, D_{train}^{query(i)}\right)$$

Pre-trained model usually require the initialized model θ perform well on each task:

$$L(\theta) = \sum_{i=1}^{M} L(\theta, D_{train}^{(i)})$$

度門大学信息学院(特色化示范性软件学院)
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

- Toy example: try to learn sine function y =asin(x+b).
- Each combination of a and b is a task.
- The goal is to fit a new sin function based on only a few points.

- MAML is able to quickly adapt with only a few datapoints.
- MAML trained model f_{θ} has learned to model the periodic nature of the sine wave!

First-Order MAML

- MAML takes partial derivatives on θ at both inner and outer loop.
- Therefore, the outer loop actually calculates the second-order derivatives, i.e. Hessian.

First-Order MAML

- The second order derivative $\frac{\partial L(\theta)}{\partial \theta_k \partial \theta_j}$ is the element of Hessian matrix $H_{\theta}(L)$.
- We can rewrite the outer loop gradient as:

$$\nabla_{\theta} L(\theta_i') = (I - \beta H_{\theta}(L)) \nabla_{\theta_i'} L(\theta_i')$$

First-Order MAML (FOMAML) calculates the approximation by simply setting the Hessian matrix at 0:

$$\nabla_{\theta} L(\theta_i') \approx \nabla_{\theta_i'} L(\theta_i')$$

First-Order MAML

8: Update
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

9: end while

Replacing θ by θ'_i highly improves the efficiency without loss of much accuracy.

	5-way Accuracy	
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (ours)	$48.07 \pm \mathbf{1.75\%}$	$63.15 \pm 0.91\%$
MAML (ours)	${f 48.70 \pm 1.84\%}$	$63.11 \pm \mathbf{0.92\%}$

厦門大學信息学院(特色化示范性软件学院) School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Image source: C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," in ICML, 2017, vol. 3, pp. 1856–1868.

Reptile

Reptile further simplify FOMAML.

versity (National Characteristic Demonstration Software School)

Simply use the direction instead of calculating gradient

MAML and Reptile

CLASSIFICATION OF ANIMALS

Learning to Weight

During optimization, we may assign different weights to different training samples, according to its learning difficulty.

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \sum_{i=1}^{N} w(\mathbf{x}_i) l(\theta, \mathbf{x}_i)$$

In this manner, difficult (frequently misclassified) samples are assigned higher weights.

 $w(\boldsymbol{x}_i) = \left(1 - p_{\nu_i}\right)^{\gamma}$

For example, Focal loss assigns weight by:

Hand-crafted design!

where p_{y_i} is the probability belonging to its ground truth y_i .

- Can we learn a mapping function from the sample x_i to its weight $w(x_i)$?
- Of course! Simply train an MLP to learn the relationship:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \sum_{i=1}^{N} F_{\omega}(l(\theta, \boldsymbol{x}_{i})) l(\theta, \boldsymbol{x}_{i})$$

where $F_{\omega}(l(\theta, x_i))$ takes the training loss as input and output the corresponding weight.

Image source: J. Shu et al., "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting," in NIPS, 2019, pp. 1–12.

Learning to Weight

The weighting function is learned based on the distribution of the dataset.

Learning to Reward

- The data augmentation operation is wrapped up in inner optimization, which is conventionally hand-designed.
 - E.g. crop, zoom, flip, rotate, etc.
- •When ω defines the data augmentation strategy, it can be learned by the outer optimization, in order to maximize validation performance.

Learning to Augment

Image source: Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson, and Y. Yang, "DADA: Differentiable Automatic Data Augmentation," in arXiv, 2020, pp. 1–16.

- In bi-level optimization, we always use the same support data to optimize model parameter θ .
- Can the support data itself be the meta-knowledge ω ?
 - Select the most significant samples to train the model.
 - Only a few selected samples can achieve high performance.

Dataset Distillation

Neural Architecture Search

- ω specifies the architecture of a neural network.
 - E.g. number of filters, filter size, stride and pooling size, activation functions, shortcut connections, etc.
- The search space is usually hard to define, and optimize.
 - Most search spaces are broad, and the space of architectures is not trivially differentiable.

MODEL-BASED METHOD

Model-Based Method

- The optimization of model network f_{θ} in all optimization-based methods are still based on gradient descend.
 - In the inner loop, given ω , we optimize θ .

$$\theta^*(\omega) = \underset{\theta}{\operatorname{argmin}} L^{task}(\theta, \omega, D^{support}_{train})$$

Can we omit this optimization step and directly obtain θ^* ?

$$\theta^*(\omega) = g_{\omega}(D_{train}^{support})$$

Model-based methods adopt the meta-knowledge ω to directly generate a model.

Memory-Augmented Neural Networks

Image source: <u>https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html#neural-turing-machines</u>

Memory-Augmented Neural Networks

Image source: A. Santoro, M. Botvinick, T. Lillicrap, G. Deepmind, and W. G. Com, "Meta-Learning with Memory-Augmented Neural Networks," in ICML, 2016, vol. 48.

- Slow weights: weights that are learned from an optimization process like SGD.
- Fast weights: weights that are directly generated by another network.
- In MetaNet, loss gradients are used as meta information to populate models that learn fast weights.
 - Slow and fast weights are combined to make predictions in neural networks.

Meta Networks

63

CNAPs

The model is not generated from scratch. We generate the adaptation model to new tasks, instead of optimize the model to new tasks.

Image source: J. Requeima, J. Gordon, S. Nowozin, and R. E. Turner, "Conditional Neural Adaptive Processes," in NIPS, 2019.

METRIC-BASED METHOD

Previously, we always have a model f_{θ} to output class score $f_{\theta}(\mathbf{x})$, no matter f_{θ} is optimized by gradient descend with meta knowledge or directly generated by meta model.

Do we have to use a model to do prediction? Is there any machine learning method that doesn't have a model?

*k*NN

Metric-Based Method

Embedding space

- Metric-based methods learn an embedding network F_{ω} .
- The learned representation is suitable for recognition by simple similarity comparison between query and support instances.
- Take one-shot learning as an example, at testing phase, we simply calculating the similarity between:

$$F_{\omega}(\boldsymbol{x}_{test}^{query})$$
 and $F_{\omega}(\boldsymbol{x}_{test}^{support(j)})$

It can also be treated as model-based method with only one linear layer.

Metric-Based Method

- Siamese networks
- Matching networks
- Prototypical networks
- Relation networks
- Graph networks

Siamese Networks

Matching Networks

Support set

Matching Networks

Simple version:

a

$$a(\widehat{\boldsymbol{x}}, \boldsymbol{x}_i) = \exp\left(\cos\left(F_{\omega}(\widehat{\boldsymbol{x}}), G_{\omega}(\boldsymbol{x}_i)\right)\right) / \sum_{j=1}^k \exp\left(\cos\left(F_{\omega}(\widehat{\boldsymbol{x}}), G_{\omega}(\boldsymbol{x}_j)\right)\right)$$

Full context version:

$$\widehat{\boldsymbol{h}}_{k}, \boldsymbol{c}_{k} = \text{LSTM}(F(\widehat{\boldsymbol{x}}), [\boldsymbol{h}_{k-1}, \boldsymbol{r}_{k-1}], \boldsymbol{c}_{k-1})$$
$$\boldsymbol{h}_{k} = \widehat{\boldsymbol{h}}_{k} + F(\widehat{\boldsymbol{x}})$$
$$\boldsymbol{r}_{k-1} = \sum_{i=1}^{|S|} a(\boldsymbol{h}_{k-1}, G(\boldsymbol{x}_{i}))G(\boldsymbol{x}_{i})$$
$$(\boldsymbol{h}_{k-1}, G(\boldsymbol{x}_{i})) = \exp\left(\boldsymbol{h}_{k-1}^{T}G(\boldsymbol{x}_{i})\right) / \sum_{j=1}^{|S|} \exp\left(\boldsymbol{h}_{k-1}^{T}G(\boldsymbol{x}_{j})\right)$$

Relation Networks

Image source: F. Sung, Y. Yang, and L. Zhang, "Learning to Compare : Relation Network for Few-Shot Learning Queen Mary University of London," in CVPR, 2018, pp. 1199–1208.

Prototypical Networks

Zero-Shot Learning

- One-shot is difficult enough. How can zero-shot work?
- Zero-shot learning differs from few-shot learning in that instead of being given a support set of training points, we are given a class meta-data vector v_k for each class.
 - For example, v_k can be a sentence embedding for text description of the image.
 - The "zero" in zero-shot is for the labelled support set, but we can utilize other information instead.
- We can simply build a mapping between meta-data vector v_k to its prototype:

$$\boldsymbol{c}_k = g_\omega(\boldsymbol{v}_k).$$

Graph Networks

76

Generally, two steps:

- Build an embedding network F_{ω} .
- Nodel the relation between $F_{\omega}(\hat{x})$ and $F_{\omega}(x_i)$, and output the probabilities.

After this lecture, you should know:

- What is meta-learning and learning to learn.
- How can we utilize meta-knowledge.
- What is few-shot learning and *N*-way-*k*-shot.
- What is the difference between optimization-based, modelbased and metric-based meta-learning.

Reference & Suggested Reading

Meta Learning: Learn to Learn

- CS 330: Deep Multi-Task and Meta Learning
- Meta-Learning: Learning to Learn Fast
- T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, "Meta-Learning in Neural Networks: A Survey," in *arXiv*, 2020.

- Any question?
- Don't hesitate to send email to me for asking questions and discussion. ③

